Backfilled polycrystalline diamond cutter with high thermal conductivity

Abstract

A front face of a diamond table mounted to a substrate is processed, for example through an acid leach, to remove interstitial catalyst binder and form a thermal channel. A material is then introduced to the front face of the diamond table, the introduced material backfilling the front face of the diamond table to fill interstitial voids left by removal of the catalyst binder in the thermal channel to a desired depth. The material is selected to be less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder.

Claims

1 . A PDC cutter, comprising: a substrate; and a diamond table mounted to the substrate, the diamond table comprising diamond crystals and interstitial catalyst binder, the diamond table further having a front face with a thermal channel where the interstitial catalyst binder has been removed and further formed to additionally include in the thermal channel a material, the material being less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder, the material being introduced to fill at least some interstitial voids left by removal of the catalyst binder in the thermal channel to a desired depth. 2 . The PDC cutter of claim 1 wherein the material is cubic boron nitride or a component of cubic boron nitride. 3 . The PDC cutter of claim 1 wherein the material is an elemental material selected from a group consisting of: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold. 4 . The PDC cutter of claim 3 wherein the material is one of a combination of two or more of the elemental materials listed in claim 3 or an alloy including one or more of the elemental materials listed in claim 3 . 5 . The PDC cutter of claim 1 wherein the material includes an alkali earth carbonate. 6 . The PDC cutter of claim 1 wherein the material includes a sulfate. 7 . The PDC cutter of claim 1 wherein the material includes a hydroxide. 8 . The PDC cutter of claim 1 wherein the material is tungsten oxide. 9 . The PDC cutter of claim 1 wherein the material is boron carbide. 10 . The PDC cutter of claim 1 wherein the material is TiC 0.6 . 11 . The PDC cutter of claim 1 wherein the material is one of an iron oxide or double oxide. 12 . The PDC cutter of claim 1 wherein the material is an intermetallic material. 13 . The PDC cutter of claim 1 wherein the material is a ceramic material. 14 . The PDC cutter of claim 1 wherein the material is introduced into the diamond table thermal channel by imbibition. 15 . The PDC cutter of claim 1 wherein the material is introduced into the diamond table thermal channel by hot isostatic pressing. 16 . The PDC cutter of claim 1 wherein the material is introduced into the diamond table thermal channel by cryogenic methods or cold pressing or both. 17 . The PDC cutter of claim 1 wherein the material is introduced into the diamond table thermal channel by ion implantation. 18 . The PDC cutter of claim 1 wherein the material is introduced into the diamond table thermal channel by one of spark plasma sintering, field assisted sintering or pulsed electric current sintering. 19 . The PDC cutter of claim 1 wherein the desired depth is between 0.010 mm to 1.0 mm. 20 . A method, comprising: removing from a front face of a diamond table mounted to a substrate, the diamond table comprising diamond crystals and interstitial catalyst binder, the interstitial catalyst binder to form a thermal channel; and introducing a material to the front face of the diamond table, the introduced material backfilling the front face of the diamond table to fill interstitial voids left by removal of the catalyst binder in the thermal channel to a desired depth, the material being less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder. 21 . The method of claim 20 where removing comprises leaching the interstitial catalyst binder from the front face of the diamond table. 22 . The method of claim 20 wherein the material is cubic boron nitride. 23 . The method of claim 20 wherein the material is an elemental material selected from a group consisting of: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold. 24 . The method of claim 23 wherein the material is one of a combination of two or more of the elemental materials listed in claim 23 or an alloy including one or more of the elemental materials listed in claim 23 . 25 . The method of claim 20 wherein the material includes an alkali earth carbonate. 26 . The method of claim 20 wherein the material includes a sulfate. 27 . The method of claim 20 wherein the material includes a hydroxide. 28 . The method of claim 20 wherein the material is tungsten oxide. 29 . The method of claim 20 wherein the material is boron carbide. 30 . The method of claim 20 wherein the material is TiC 0.6 . 31 . The method of claim 20 wherein the material is one of an iron oxide or double oxide. 32 . The method of claim 20 wherein the material is an intermetallic material. 33 . The method of claim 20 wherein the material is as ceramic material. 34 . The method of 20 wherein introducing the material comprises performing an imbibition process. 35 . The method of 20 wherein introducing the material comprises performing a hot isostatic pressing. 36 . The method of claim 20 wherein introducing the material comprises performing a cryogenic process or cold pressing process, or performing both processes. 37 . The method of claim 20 wherein introducing the material comprises performing an ion implantation. 38 . The method of claim 20 wherein introducing the material comprises performing one of a spark plasma sintering process, field assisted sintering process or pulsed electric current sintering process. 39 . The method of claim 20 wherein the desired depth is between 0.010 mm to 1.0 mm.
PRIORITY CLAIM [0001] This application claims priority from U.S. Provisional Application for Pat. No. 61/164,155 filed Mar. 27, 2009, the disclosure of which is hereby incorporated by reference. TECHNICAL FIELD [0002] The present invention relates generally to polycrystalline diamond cutters. BACKGROUND [0003] Polycrystalline diamond cutters, also known as Polycrystalline Diamond Compacts (PDCs), are made from synthetic diamond or natural diamond crystals mounted on a substrate made of tungsten carbide. The sintering process used to manufacture these devices typically begins with premium saw-grade diamond crystals. The diamond crystals are sintered together at temperatures of approximately 1400° C. and pressures of around 61 kbar in the presence of a liquid metal synthesizing catalyst, most commonly cobalt, functioning as a binder. Other catalysts can be used including elements from the Group VIII metals (as well as alloys of Group VIII metals), silicon, and other alloys such as magnesium carbonate. The temperature of 1400° C. is typically maintained for approximately 5 to 10 minutes. The system is then cooled and finally depressurized. The pressure rate, the heating rate and the cooling rate depend on the type of equipment (belt or cubic press) used, the particular catalyst used and the raw-grade diamond crystals used. Typically, the diamond is bonded to the tungsten carbide substrate during the same high-temperature, high-pressure process. [0004] It is commonly recognized that PDC cutters wear according to three different modes characterized by the temperature at the cutter tip (see, Ortega and Glowka, “Studies of the Frictional Heating of Polycrystalline Diamond Compact Drag Tools During Rock Cutting,” June 1982; and Ortega and Glowka, “Frictional Heating and Convective Cooling of Polycrystalline Diamond Drag Tools During Rock Cutting,” Soc. of Petr. Eng. Journal, April 1984; the disclosures of which are hereby incorporated by reference). Below 750° C., the primary mode of wear is micro-chipping of the sintered diamond. Above 750° C., the wear mode changes from micro-chipping of individual diamond grains to a more severe form of wear. This more severe form of wear is caused by 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite as it approaches 800° C. [0005] The prior art teaches a way to extend cutter life by removing the cobalt catalyst from the PDC diamond table to a depth of less than 100 μm, or perhaps between 100 to 200 μm or more, using an acid attack. The acid leaches out substantially all of the interstitial cobalt from the face of the diamond layer to the desired depth leaving interstitial openings. This treatment suppresses the potential for differential thermal expansion between the diamond and the catalyst metal and increases the thermal diffusivity at least in the area of the leached depth from a front face of the diamond table. These products are known to those skilled in the art as leached PDCs and they have an industry recognized performance improvement over non-leached PDCs. The acids required by the leaching process can be harsh and difficult to handle safely. [0006] Leached PDC cutters have been considered to have improved performance over non-leached cutters because of several reasons: [0007] First: The absence of interstitial cobalt in a thermal channel situated along the front face of the diamond table improves heat transfer to drilling fluid, across the diamond table face and to the interior of the cutter through presence of diamond to diamond bonding. Heat transfer along the thermal channel helps to keep the temperature at the cutter tip below a critical temperature past which failure due to diamond chipping occurs. This is due at least in part to the absence of a substantial differential thermal conductivity characteristic (note: a 2000 Wm −1 K −1 thermal conductivity for the diamond in comparison to a 60 Wm −1 K −1 thermal conductivity for cobalt). Additionally, while the cobalt has been removed and replaced by a void in the interstices of the leached cutter, the void (which also has poor heat dissipation characteristics) nonetheless appears to create less interference with respect to dissipation of heat across the diamond to diamond bonds than is experienced when interstitial cobalt is present. This explains to some degree why leached cutters perform better than non-leached cutters. [0008] Second: The region where the cobalt has been removed does not appear to suffer bond breakage due to cobalt thermal expansion. This is due at least in part to the absence of a substantial differential thermal expansion characteristic (note: a 13 μmm −1 K −1 thermal expansion coefficient for cobalt in comparison to a 1 μmm −1 K −1 thermal expansion coefficient for diamond). This second point has, according to conventional wisdom, been the key reason for the success of leached PDC cutters. [0009] Third, the heat capacity of the thermal channel situated along the front face of the diamond table decreases which results in a substantial improvement in thermal diffusivity. [0010] Notwithstanding the foregoing and the advantage of leached cutter technology, there exists a need in the art for improvement by providing a leached PDC cutter possessing better thermal properties. [0011] Reference is made to the following prior art documents: U.S. Pat. Nos. 4,016,736; 4,124,401; 4,184,079; 4,605,343; 4,940,180; 5,078,551; 5,609,926; 5,769,986; 5,857,889; 6,779,951; 6,887,144 and 7,635,035; Published PCT Application WO 01/79583; Wang, “A Study on the Oxidation Resistance of Sintered Polycrystalline Diamond with Dopants,” Science and Technology of New Diamond, pp 437-439, 1990; Salvadori, “Metal Ion Mixing in Diamond,” Surface and Coatings Technology, June 2000, p. 375; Pu, “The Application of Ion Beam Implantation for Synthetic Diamond Surface Modification,” IEEE Int. Conf. on Plasma Science, 1197; Weishart, “N-type Conductivity in High-fluence Si-implanted Diamond,” Journal of Applied Physics, vol. 97, issue 10, 2005; Vankar, “Ion Irradiation Effects in Diamond and Diamond Like Carbon Thin Films,” 1995; Dearnaley, “The Modification of Material by Ion Implantation,” Physics in Technology 14, 1983; Stock, “Characterization and Mechanical Properties of Ion-implanted Diamond Surfaces,” Surface and Coatings Technology, vols. 146-147, 2001; “Modification of Diamond Single Crystals by Chromium Ion Implantation with Sacrificial Layers,” Analytical and Bioanalytical Chemistry, vol. 374, nos. 7-8, 2002; the disclosures of which are hereby incorporated by reference. SUMMARY [0012] The inventors believe that the primary failing of currently available PDC cutters is not due to the incongruous thermal expansion property of cobalt in comparison to diamond, but rather is due to the fact that a PDC cutter, even with a leached diamond table, exhibits poor thermal conductivity of heat away from the diamond tip on the working face. A cutter constructed or treated to significantly improve thermal conductivity, especially along the front working face of the diamond table (along a thermal channel), in accordance with the present invention will outperform not only conventional PDC cutters, but leached PDC cutters as well. The improved thermal conductivity reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite. [0013] In accordance with an embodiment, a method is presented for the creation of a thermally stable diamond table for use in a PDC cutter. The method involves increasing the thermal conductivity of the diamond table by backfilling a PDC cutter, where the synthesizing catalyst material (such as, cobalt) has been removed to a desired depth, with a less thermally expandable and/or more thermally conductive and/or lower heat capacity material. In other words, the provided less thermally expandable and/or more thermally conductive and/or lower heat capacity material fills the interstitial voids left by the removed catalyst material in the diamond table to the desired depth along the front face. The desired depth referenced above may, for example, be between 0.010 mm to 1.0 mm. [0014] A material candidate for use in this application is cubic boron nitride, which has a thermal conductivity greater than 200 Wm −1 K −1 (see, Nature volume 337, Jan. 26, 1989) and thermal expansion coefficient of 1.2 μmm −1 K −1 . These values are advantageously comparable to and compatible with the thermal properties of diamond, and further are better than could be achieved in accordance with prior art leached cutter implementations. [0015] Other elemental material candidates for use in this application include: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold. Combinations of these elements with other elements as well as alloys including one or more of these elements may be used. Again, the thermal properties of these material candidates are superior to interstitial catalyst or interstitial voids as would be present in leached cutters. [0016] The material may alternatively comprise: alkali earth carbonates, sulfates, hydroxides, tungsten oxide, boron carbide, titanium carbide, iron oxides, double oxides, intermetallics and ceramics. [0017] The material chosen for use in the method can be micronized or prepared in other suitable ways to be applied to a front surface of a target diamond table. A treatment is then performed which causes that chosen material to migrate into the diamond table at least partially filling the interstitial voids left by removal of the interstitial cobalt catalyst. In connection with the process, some remaining interstitial synthesizing catalyst material (such as, cobalt) may be at least partially displaced. In any event, the presence of the material in the diamond table along a front face forms a thermal channel having improved thermal properties (such as conductivity or expansion or heat capacity) in comparison to prior art leached and non-leached implementations. This thermal channel provides for better conduction of heat away from the cutter tip and reduces the likelihood of diamond material failure in the diamond table during cutter operation. [0018] In one implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises an imbibition treatment. [0019] In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises a Hot Isostatic Pressing (HIPing) treatment. [0020] In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises a cold pressing or cryogenic treatment or both in combination. [0021] In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises spark plasma sintering. [0022] A number of techniques may be used for applying the material to the front surface of a target diamond table including: painting, coating, soaking, dipping, plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition. Other techniques are known to those skilled in the art. It will be recognized that some techniques used for applying the material to the front face of the diamond table may additionally and concurrently assist in effectuating migration of the material into the diamond table. For example, deposition techniques as described above, perhaps in conjunction with plasma treatments and selective heating, could produce migration into the diamond table to at least partially fill the interstitial voids left by the removed synthesizing catalyst material (such as, cobalt) in the near surface region of the diamond table. [0023] The material may alternatively be applied and inserted using an ion implantation process at a suitable energy level. In this process, a selected dopant species (for example, boron) is implanted in the front surface of the target diamond table to a certain depth. A subsequent, and perhaps optional, annealing process may be used to diffuse the implanted dopant species to an increased surface depth and/or to cure defects in the diamond crystal structure resulting from the implantation process. [0024] It will further be understood that other mechanical or chemical transfer means and processes could alternatively be used for the purpose of infusing or migrating the less thermally expandable and/or highly thermally conductive material to backfill the leached diamond table to the desired depth. [0025] It will also be understood that the processes and techniques described herein are applicable not only to a cutter with a diamond table mounted to a substrate, but also to free-standing diamond table bodies (which may subsequently be mounted to a substrate such as tungsten carbide). BRIEF DESCRIPTION OF THE DRAWINGS [0026] FIG. 1 illustrates a PDC cutter of conventional configuration; [0027] FIG. 2 illustrates a leached PDC cutter of conventional configuration; [0028] FIG. 3 illustrates a PDC cutter having improved thermal properties in comparison with the cutters of FIGS. 1 and 2 ; [0029] FIGS. 4 and 5 illustrate patterns for application of improved thermal property materials to the face of the cutter; [0030] FIG. 6 illustrates application of a coating material to a cutter in accordance with a method of manufacture; [0031] FIG. 7 illustrates performance of a treatment step in the method; and [0032] FIG. 8 illustrates a cryogenic treatment mechanism and process. DETAILED DESCRIPTION OF THE DRAWINGS [0033] Reference is made to FIG. 1 which illustrates a PDC cutter 10 of conventional configuration. It will be noted that FIG. 1 is not drawn to any particular scale. The cutter includes a diamond table 12 mounted to a substrate 14 . The diamond table 12 is formed of diamond crystals (designated by “x”) sintered together at high pressure and temperature in the presence of a liquid metal catalyst (designated by “•”), most commonly cobalt. The “x” and “•” representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the diamond crystals “x” and interstitial cobalt binder “•” throughout the diamond table 12 (cobalt content can vary from 3 to 12%). The substrate 14 is typically formed of tungsten carbide. It will be recognized that the inclusion of the substrate 14 is optional (i.e., the diamond table could be a free standing body if desired). [0034] When the PDC cutter 10 is used in a cutting application, it experiences significant heat exposure. Most commonly, heat is generated at an edge of the diamond table (on the working face) where cutting is being performed. The heat arising from cutting action radiates through the diamond table 12 and perhaps to the substrate 14 . At elevated temperatures, the diamond table 12 begins to fail due to chipping and other destructive effects relating to the adverse affect heat has on the configuration of the diamond table. [0035] To address this issue, the prior art teaches removing the interstitial cobalt from the PDC diamond table to a depth of less than 100 μm, or perhaps between 100 to 200 μm or more, using an acid attack. The acid attack leaches out substantially all of the interstitial cobalt from the face of the diamond layer to the desired depth. A leached PDC cutter 10 of conventional configuration is illustrated in FIG. 2 . Again, it will be noted that FIG. 2 is not drawn to any particular scale. One should be recognize, however, the absence of interstitial metal catalyst (designated by “•”) near the top surface of the diamond table 12 (working face) as a result of the leaching operation. The leach depth 16 defines a thermal channel 18 which does not suffer as severely from the known differences in thermal properties between diamond and cobalt, and thus has been shown to provide superior performance in comparison to the conventional PDC cutter shown in FIG. 1 . [0036] The present invention provides a PDC cutter having a thermal channel with thermal properties superior to those of the leached PDC cutter of FIG. 2 . The present invention further provides a method for manufacturing such a PDC cutter with an improved thermal channel. The improved thermal conductivity reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and/or 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite. [0037] With reference to FIG. 3 , a PDC cutter 20 in accordance with the present invention includes a diamond table 22 mounted to a substrate 24 . The diamond table 22 is formed of diamond crystals (designated by “x”) sintered together at high pressure and temperature in the presence of a liquid metal catalyst (designated by “•”), most commonly cobalt. The “x” and “•” representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the diamond crystals “x” and interstitial cobalt “•” binder within the diamond table. The substrate 24 is typically formed of tungsten carbide, and is optional (i.e., the diamond table could be a free standing body if desired). [0038] The PDC cutter 20 further includes, associated with its working face, a thermal channel 28 in which a less thermally expandable and/or more thermally conductive and/or lower heat capacity material (designated by “*”, and referred to herein as the “material”) is present. The starting point is a leached PDC cutter as shown in FIG. 2 , and the material (designated by “*”) is introduced, for example through overlay, infusion, migration, and/or implantation, into the front face to backfill the interstitial voids left by the removal of the synthesizing cobalt catalyst material to a desired depth 26 . The “x”, “•” and “*” representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the material “*” in the thermal channel 28 with respect to the diamond crystals “x” and interstitial cobalt “•” binder of the diamond table 22 . The thermal channel 28 is defined by the depth 26 to which the material extends from the front (working) face or top surface of the diamond table. The presence of the material to the depth 26 presents a thermal channel 28 whose thermal properties are superior to the FIG. 2 channel 18 provided solely by leaching the interstitial cobalt out of the diamond table. The improved thermal conductivity in the channel 28 reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and/or 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite. [0039] The material in this application, for example, replaces the cobalt binder leached from the diamond table to the depth 26 . The depth 26 may, for example, range from 0.010 mm to 1.0 mm. [0040] As a result, the thermal diffusivity (the ratio of thermal conductivity to volumetric heat capacity) of the thermal channel 28 is increased. This can be accomplished by increasing the numerator of the ratio (for example, through the presence of a material with higher thermal conductivity) or decreasing the denominator of the ratio (for example, through the presence of a material with lower specific heat capacity), or a combination of both of increasing the numerator and decreasing the denominator. It is noted that leaching out the cobalt binder causes thermal conductivity to increase by about 2% while heat capacity drops by about 63% producing an overall increase in diffusivity of about 43%. This explains, to some degree, the advantage of a leached diamond table (see, FIG. 2 ). Backfilling of the leached cutter with the material, as discussed above, is designed to provide for still further improvement (increase) in diffusivity where the chosen material contributes to effectively increasing the numerator and/or decreasing the denominator of the thermal diffusivity ratio with respect to the thermal channel 28 . [0041] The material may be provided over the entire top surface (front face) of the diamond table 22 (see, FIG. 4 ), or be provided in accordance with a desired pattern on the top surface (front face) of the diamond table 22 (see, FIG. 5 ). The pattern selected for material inclusion may assist in more efficiently channeling heat from a cutting tip across the working face of the diamond table. This pattern may be provided and defined by the use of conventional masking techniques. In one exemplary implementation, the material is provided with a pattern as shown in the FIG. 5 comprising a plurality of radially extending regions which include the material backfilled to the desired depth. [0042] A material candidate for use in this application is cubic boron nitride, which has a thermal conductivity greater than 200 Wm −1 K −1 (see, Nature volume 337, Jan. 26, 1989) and thermal expansion coefficient of 1.2 μmm −1 K −1 . These thermal properties are comparable to and compatible with the thermal properties of diamond, and are an improvement over the thermal properties of interstitial voids (as would be pertinent in the cobalt leached cutter of FIG. 2 ). Improved thermal and mechanical performance of the thermal channel 28 would be experienced from use of the cubic boron nitride as a coating or overlay material supporting the infusion, migration and/or introduction of the component material boron into the diamond table to backfill the interstitial voids left by the leached out synthesizing catalyst material (such as, cobalt) to a desired depth. [0043] Other elemental material candidates for use in this application include: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold. Combinations of these elements with other elements as well as alloys including one or more of these elements may be used as the material. Again, these materials each possess thermal properties comparable to and compatible with the thermal properties of diamond, and if interstitially included within the diamond table would present an improvement over the thermal properties of interstitial voids (as would be pertinent in the cobalt leached cutter of FIG. 2 ). [0044] Another material candidate for use in this application alternatively comprises one or more alkali earth carbonates such as Li 2 CO 3 , NaCO 3 , MgCO 3 , SrCO 3 , K 2 CO 3 , and the like. [0045] Another material candidate for use in this application alternatively comprises one or more sulfate such as Na 2 SO 4 , MgSO 4 , CaSO 4 , and the like. [0046] Another material candidate for use in this application alternatively comprises one or more hydroxide such as Mg(OH) 2 , Ca(OH) 2 , and the like. [0047] Another material candidate for use in this application alternatively comprises tungsten oxide (WO 3 ). [0048] Another material candidate for use in this application alternatively comprises boron carbide (B 4 C). [0049] Another material candidate for use in this application alternatively comprises TiC 0.6 . [0050] Another material candidate for use in this application alternatively comprises one or more iron oxide or double oxide such as FeTiO 3 , Fe 2 , SiO 4 , Y 3 Fe 5 O 12 , Fe 5 O 12 , and the like. [0051] Another material candidate for use in this application alternatively comprises one or more intermetallic materials. [0052] Another material candidate for use in this application alternatively comprises one or more ceramic materials. [0053] A number of different methods may be used to manufacture the PDC cutter 20 . [0054] In a first method, a coating of the material 30 (also referred to as the “thermal channel material”) is applied to the front surface of the diamond table 22 which has been leached of catalyst binder material to a depth 16 (as indicated by the dashed line). This is shown in FIG. 6 . A number of techniques may be used for applying the material to the front surface of a target diamond table including: painting, coating, soaking, dipping, plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition. [0055] A treatment is then performed which causes that material 30 (or specific components within that material) to backfill voids left by leaching out the synthesizing catalyst material (such as, cobalt) in a near surface region 32 of the diamond table forming the thermal channel 28 . This is shown in FIG. 7 . The unreacted material 30 may be removed, if desired. [0056] In one implementation, the treatment used comprises an imbibition treatment. Imbibition treatment processes are disclosed in Published U.S. Applications for Patent 2008/0240879 and 2009/0032169, the disclosures of which are hereby incorporated by reference. These imbibition processes are disclosed in connection with effectuating cobalt migration in tungsten carbide substrates, but are believed to be pertinent as well to effectuating an introduction or migration of the material (or components of the material) from the front surface of the diamond table to a desired depth. In connection therewith, the introduced material (or components within that material) backfills the interstitial voids left by the leached out synthesizing catalyst material (such as, cobalt) in the near surface region 32 of the diamond table. [0057] In another implementation, the treatment used comprises a Hot Isostatic Pressing (HIPing) treatment. The operation and characteristics of the HIPing treatment are well understood by those skilled in the art. This process subjects a component to both elevated temperature and isostatic gas pressure in a high pressure containment vessel. The elevated temperature and isostatic gas pressure are believed useful to effectuating the introduction of the material (or components of the material) in the front face of the diamond table. In a preferred embodiment using this method the tungsten carbide substrate and a portion of the diamond layer closest to the tungsten carbide substrate may be encased or masked to preclude treatment of these areas, reserving the treatment to the working face of the diamond layer. In the case of cobalt catalyst binder and the cubic boron nitride material, while submitted to temperature above 750° C., the cobalt expands at a rate that allows the cubic boron nitride material (or the elemental boron component thereof) to diffuse and to fill the interstitial pores under the effect of the isostatic pressure. [0058] In another implementation, the treatment used comprises a cold pressing or cryogenic treatment. FIG. 8 illustrates an implementation of this treatment in which the material coated front surface of the diamond table is held in a liquid nitrogen chamber for a selected period of time and vacuum environment. A heated shell is used to hold the tungsten carbide substrate and provide some protection against damage to the tungsten carbide substrate and/or the diamond table bond due to the extreme cold of the liquid nitrogen chamber. The cold temperature and vacuum pressure are believed to facilitate the introduction of the material (or specific components within that material) in the front face of the diamond table. In a preferred embodiment of this method micronized particles of the material (or specific components within that material) can be pressed into the face of the diamond layer with a piston mechanism to further effect the entrance of the material (or components of the material) into the diamond layer. [0059] In another implementation, the treatment used comprises spark plasma sintering, or field assisted sintering or pulsed electric current sintering. Details concerning these processes are known to those skilled in the art (see, for example, Shen, “Spark Plasma Sintering Assisted Diamond Formation From Carbon Nanotubes At Very Low Pressure,” 2006 Nanotechnology 17 pages 2187-2191 (2206), the disclosure of which is incorporated by reference). The application of the pulsed current of the sintering technique causes localized heating at high rates with the heat facilitating migration of the material (or components of the material) in and to fill the vacated interstitial pores left by leaching of the face of the diamond table. [0060] In another method, the plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition used to coat the front surface of the diamond table provides for some penetration of the material into the diamond table for backfilling interstitial voids left by the leached out synthesizing catalyst material (such as, cobalt). The material is heated at a temperature high enough to be vaporized and to be condensed at a temperature below the previous temperature but above 750° C. While submitted to temperature above 750° C., the vapor of the material (of components of the material) diffuses and fills the interstitial pores left by leaching of the face of the diamond table. [0061] In another method, no coating with the material is performed. Instead, the material is selected because it is especially well suited to ion implantation. The selection of boron or phosphorous (or other known p-type or n-type dopants) as likely candidates for ion implantation is preferred as the use of these dopant species is well known from the field of semiconductor integrated circuit fabrication. A PDC cutter as shown in FIG. 2 is placed within an ion implantation chamber and ions of a selected type comprising the material are implanted at high energy for backfilling to replace the leached out synthesizing catalyst material (such as, cobalt). An annealing heat treatment may be performed following implantation to further diffuse the dopant species and/or repair damage to the diamond crystal structure which results from the implantation. [0062] It will further be understood that other mechanical or chemical transfer means and processes could alternatively be used for the purpose of infusing or migrating the material (or components of the material) to backfill for the removed synthesizing catalyst material (such as, cobalt). [0063] It will also be understood that the process, technique and resulting product is applicable not only to a cutter with a diamond table mounted to a substrate, but also to free-standing diamond table bodies (which may subsequently be mounted to a substrate such as tungsten carbide). Thus, the methods described above could be applied just to the diamond table (in the absence of a supporting tungsten carbide substrate). [0064] Embodiments of the invention have been described and illustrated above. The invention is not limited to the disclosed embodiments.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (53)

    Publication numberPublication dateAssigneeTitle
    US-2005137078-A1June 23, 20053M Innovative Properties CompanyAlumina-yttria particles and methods of making the same
    US-2008308276-A1December 18, 2008Baker Hughes IncorporatedCutting elements for casing component drill out and subterranean drilling, earth boring drag bits and tools including same and methods of use
    US-5127923-AJuly 07, 1992U.S. Synthetic CorporationComposite abrasive compact having high thermal stability
    US-6443248-B1December 31, 1969
    US-4664705-AMay 12, 1987Sii Megadiamond, Inc.Infiltrated thermally stable polycrystalline diamond
    US-6258139-B1July 10, 2001U S Synthetic CorporationPolycrystalline diamond cutter with an integral alternative material core
    US-5647878-AJuly 15, 1997General Electric CompanyFabrication of brazable in air diamond tool inserts and inserts fabricated thereby
    US-5025874-AJune 25, 1991Reed Tool Company Ltd.Cutting elements for rotary drill bits
    US-6068913-AMay 30, 2000Sid Co., Ltd.Supported PCD/PCBN tool with arched intermediate layer
    US-5078551-AJanuary 07, 1992U.S. Philips CorporationDiamond tool
    US-4940180-AJuly 10, 1990Martell Trevor JThermally stable diamond abrasive compact body
    US-7008672-B2March 07, 2006Skeleton Technologies AgMethod of manufacturing a diamond composite and a composite produced by same
    US-2008142276-A1June 19, 2008Smith International, Inc.Thermally stable ultra-hard material compact constructions
    US-4670024-AJune 02, 1987Bhat Deepak G, Woerner Paul F, Vinod SarinSilicon nitride cutting tool and process for making
    US-4124401-ANovember 07, 1978General Electric CompanyPolycrystalline diamond body
    US-5379854-AJanuary 10, 1995Dennis Tool CompanyCutting element for drill bits
    US-6663682-B2December 16, 2003Saint-Gobain Abrasives Technology CompanyArticle of superabrasive coated with metal
    US-5609926-AMarch 11, 1997Prins; Johan F.Diamond doping
    US-2008230280-A1September 25, 2008Smith International, Inc.Polycrystalline diamond having improved thermal stability
    US-2008073126-A1March 27, 2008Smith International, Inc.Polycrystalline diamond composites
    US-4184079-AJanuary 15, 1980National Research Development CorporationRadiation toughening of diamonds
    US-2007079994-A1April 12, 2007Smith International, Inc.Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
    US-6779951-B1August 24, 2004U.S. Synthetic CorporationDrill insert using a sandwiched polycrystalline diamond compact and method of making the same
    US-2008179104-A1July 31, 2008Smith International, Inc.Nano-reinforced wc-co for improved properties
    US-2006157285-A1July 20, 2006Us Synthetic CorporationPolycrystalline diamond insert, drill bit including same, and method of operation
    US-4995887-AFebruary 26, 1991Reed Tool Company LimitedCutting elements for rotary drill bits
    US-2006060392-A1March 23, 2006Smith International, Inc.Thermally stable diamond polycrystalline diamond constructions
    US-5277940-AJanuary 11, 1994Diamond Technologies CompanyMethod for treating diamonds to produce bondable diamonds for depositing same on a substrate
    US-7377341-B2May 27, 2008Smith International, Inc.Thermally stable ultra-hard material compact construction
    US-5645617-AJuly 08, 1997Frushour; Robert H.Composite polycrystalline diamond compact with improved impact and thermal stability
    US-2009090563-A1April 09, 2009Smith International, Inc.Diamond-bonded constrcutions with improved thermal and mechanical properties
    US-2007187155-A1August 16, 2007Smith International, Inc.Thermally stable ultra-hard polycrystalline materials and compacts
    US-2009218276-A1September 03, 2009Brigham Young UniversityFunctionalized diamond particles and methods for preparing the same
    US-5857889-AJanuary 12, 1999Thermoceramix, LlcArc Chamber for an ion implantation system
    US-2007278017-A1December 06, 2007Smith International, Inc.Rolling cutter
    US-4536442-AAugust 20, 1985General Electric CompanyProcess for making diamond and cubic boron nitride compacts
    US-2005050801-A1March 10, 2005Cho Hyun Sam, Han Kyung Ryul, Song Ki JeonDoubled-sided and multi-layered PCD and PCBN abrasive articles
    US-7350601-B2April 01, 2008Smith International, Inc.Cutting elements formed from ultra hard materials having an enhanced construction
    US-5769986-AJune 23, 1998Northrop Grumman CorporationStress-free bonding of dissimilar materials
    US-4605343-AAugust 12, 1986General Electric CompanySintered polycrystalline diamond compact construction with integral heat sink
    US-2008223623-A1September 18, 2008Smith International, Inc.Polycrystalline diamond constructions having improved thermal stability
    US-2008098659-A1May 01, 2008Chien-Min SungMethods for securing individual abrasive particles to a substrate in a predetermined pattern
    US-7635035-B1December 22, 2009Us Synthetic CorporationPolycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
    US-6443248-B2September 03, 2002Smith International, Inc.Drill bit inserts with interruption in gradient of properties
    US-6887144-B2May 03, 2005Diamond Innovations, Inc.Surface impurity-enriched diamond and method of making
    US-2008302579-A1December 11, 2008Smith International, Inc.Polycrystalline diamond cutting elements having improved thermal resistance
    US-2008115421-A1May 22, 2008Us Synthetic CorporationMethods of fabricating superabrasive articles
    US-2008073127-A1March 27, 2008Smith International, Inc.Atomic layer deposition nanocoatings on cutting tool powder materials
    US-2002014041-A1February 07, 2002Baldoni J. Gary, Andrews Richard M., Geary Earl G., Shaw Douglas H.Process for coating superabrasive with metal
    US-4016736-AApril 12, 1977General Electric CompanyLubricant packed wire drawing dies
    US-2008115424-A1May 22, 2008Element Six (Pty) LtdPolycrystalline Abrasive Materials and Method of Manufacture
    US-2010108403-A1May 06, 2010Smith International, Inc.Surface coatings on cutting elements
    US-5722497-AMarch 03, 1998Dresser Industries, Inc.Roller cone gage surface cutting elements with multiple ultra hard cutting surfaces

NO-Patent Citations (0)

    Title

Cited By (60)

    Publication numberPublication dateAssigneeTitle
    US-2012273280-A1November 01, 2012Smith International, Inc.Polycrystalline diamond compact cutters with conic shaped end
    US-9199356-B2December 01, 2015Element Six Abrasives S.A.Cutting element
    US-8858662-B2October 14, 2014Baker Hughes IncorporatedMethods of forming polycrystalline tables and polycrystalline elements
    WO-2017023312-A1February 09, 2017Halliburton Energy Services, Inc.Diamant polycristallin fritté par frittage flash
    US-8839889-B2September 23, 2014Baker Hughes Incorporated, Element Six LtdPolycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
    US-9790746-B2October 17, 2017Baker Hughes IncorporatedMethod of forming polycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material
    US-9284980-B1March 15, 2016Us Synthetic CorporationHeavy load bearings and related methods
    US-2014154509-A1June 05, 2014Diamond Innovations, Inc.Providing a catlyst free diamond layer on drilling cutters
    US-8808859-B1August 19, 2014Us Synthetic CorporationPolycrystalline diamond compact including pre-sintered polycrystalline diamond table having a thermally-stable region and applications therefor
    US-9856702-B2January 02, 2018Smith International, Inc.Cutting element for a downhole tool
    US-8764864-B1July 01, 2014Us Synthetic CorporationPolycrystalline diamond compact including a polycrystalline diamond table having copper-containing material therein and applications therefor
    US-8778040-B1July 15, 2014Us Synthetic CorporationSuperabrasive elements, methods of manufacturing, and drill bits including same
    US-9027675-B1May 12, 2015Us Synthetic CorporationPolycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
    WO-2017023315-A1February 09, 2017Halliburton Energy Services, Inc.Spark plasma sintered polycrystalline diamond compact
    US-8919463-B2December 30, 2014National Oilwell DHT, L.P.Polycrystalline diamond cutting element
    US-2014360103-A1December 11, 2014Baker Hughes Incorporated, Element Six LimitedPolycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
    WO-2013188688-A3February 06, 2014Varel International Ind., L.P.Outils de coupe au diamant polycristallin (pcd) présentant une meilleure résistance et une meilleure stabilité thermique
    US-8651203-B2February 18, 2014Baker Hughes IncorporatedPolycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth-boring tools including such polycrystalline compacts, and related methods
    US-9381620-B1July 05, 2016Us Synthetic CorporationMethods of fabricating polycrystalline diamond compacts
    US-8753413-B1June 17, 2014Us Synthetic CorporationPolycrystalline diamond compacts and applications therefor
    US-9776917-B2October 03, 2017Smith International, Inc.Coating on PDC/TSP cutter for accelerated leaching
    US-9623542-B1April 18, 2017Us Synthetic CorporationMethods of making a polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material
    US-2011266059-A1November 03, 2011Element Six (Production) (Pty) Ltd, Baker Hughes IncorporatedPolycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
    US-8911521-B1December 16, 2014Us Synthetic CorporationMethods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
    US-9808910-B2November 07, 2017Us Synthetic CorporationPolycrystalline diamond compacts
    US-9739097-B2August 22, 2017Smith International, Inc.Polycrystalline diamond compact cutters with conic shaped end
    US-9394747-B2July 19, 2016Varel International Ind., L.P.PCD cutters with improved strength and thermal stability
    US-9849561-B2December 26, 2017Baker Hughes Incorporated, Element Six LtdCutting elements including polycrystalline diamond compacts for earth-boring tools
    WO-2016105340-A1June 30, 2016Halliburton Energy Services, Inc.Liaison chimiquement renforcée entre des matériaux durs polycristallins thermiquement stables et un matériau de brasage
    US-8323367-B1December 04, 2012Us Synthetic CorporationSuperabrasive elements, methods of manufacturing, and drill bits including same
    US-9643293-B1May 09, 2017Us Synthetic CorporationMethods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
    GB-2490480-ANovember 07, 2012Halliburton Energy Serv IncSelectively leached cutter and methods of manufacture
    US-8080071-B1December 20, 2011Us Synthetic CorporationPolycrystalline diamond compact, methods of fabricating same, and applications therefor
    GB-2547574-AAugust 23, 2017Halliburton Energy Services IncChemically strenghened bond between thermally stable polycrystalline hard materials and braze material
    GB-2505573-AMarch 05, 2014Smith InternationalCoating on PDC/TSP cutter for accelerated leaching
    US-8529649-B2September 10, 2013Us Synthetic CorporationMethods of fabricating a polycrystalline diamond structure
    US-2012211283-A1August 23, 2012Baker Hughes IncorporatedPolycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth boring tools including such polycrystalline compacts, and related methods
    CN-103260799-AAugust 21, 2013国民油井Dht公司聚晶金刚石切割元件
    US-8814966-B1August 26, 2014Us Synthetic CorporationPolycrystalline diamond compact formed by iniltrating a polycrystalline diamond body with an infiltrant having one or more carbide formers
    US-9663994-B2May 30, 2017Us Synthetic CorporationPolycrystalline diamond compact
    US-2013248258-A1September 26, 2013Varel International Ind., L.P.Leached Cutter And Method For Improving The Leaching Process
    US-9822523-B1November 21, 2017U.S. Synthetic CorporationHeavy load bearings and related methods
    US-8999025-B1April 07, 2015Us Synthetic CorporationMethods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
    US-8979956-B2March 17, 2015Us Synthetic CorporationPolycrystalline diamond compact
    US-8236074-B1August 07, 2012Us Synthetic CorporationSuperabrasive elements, methods of manufacturing, and drill bits including same
    WO-2012135497-A2October 04, 2012Smith International Inc.Revêtement sur instrument de coupe en pdc/tsp pour une lixiviation accélérée
    US-9017438-B1April 28, 2015Us Synthetic CorporationPolycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
    WO-2012161742-A1November 29, 2012Beckmann Gerhard BSurface de coupe autorenouvelable, outil et procédé pour fabriquer celle-ci au moyen de techniques de la métallurgie des poudres et de techniques de densification
    US-8821604-B2September 02, 2014Us Synthetic CorporationPolycrystalline diamond compact and method of making same
    US-9422770-B2August 23, 2016Smith International, Inc.Method for braze joining of carbonate PCD
    CN-103582737-AFebruary 12, 2014史密斯国际有限公司在pdc/tsp切割器上的用于促进浸滤的涂层
    US-2014131119-A1May 15, 2014Baker Hughes IncorporatedPolycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth-boring tools including such polycrystalline compacts, and related methods
    US-8778259-B2July 15, 2014Gerhard B. BeckmannSelf-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
    WO-2012121945-A3January 31, 2013Baker Hughes IncorporatedProcédés de formation de plaques polycristallines et d'éléments polycristallins et structures associées
    US-8790430-B1July 29, 2014Us Synthetic CorporationPolycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having a copper-containing material and applications therefor
    US-9440333-B2September 13, 2016Baker Hughes IncorporatedMethods of forming polycrystalline elements from brown polycrystalline tables
    US-9023125-B2May 05, 2015Us Synthetic CorporationPolycrystalline diamond compact
    WO-2012135497-A3February 28, 2013Smith International Inc.Revêtement sur instrument de coupe en pdc/tsp pour une lixiviation accélérée
    US-9376868-B1June 28, 2016Us Synthetic CorporationPolycrystalline diamond compact including pre-sintered polycrystalline diamond table having a thermally-stable region and applications therefor
    WO-2013188688-A2December 19, 2013Varel International Ind., L.P.Pcd cutters with improved strength and thermal stability